Lecture 20: Fourier Analysis on the Boolean Hypercube

Definition (Convolution)

$$(f * g)(x) = \sum_{r \in \{0,1\}^n} f(r)g(x+r)$$

For two distributions f and g, the distribution (f ⊕ g) is the distribution that samples a ~ f and b ~ g and outputs (a ⊕ b)

• Note:
$$(f \oplus g) = (f * g)$$

Fourier Coefficients of a Convolution

Lemma

$$\widehat{(f * g)}(S) = N \cdot \widehat{f}(S) \cdot \widehat{g}(S)$$

$$\widehat{(f * g)}(S) = \underset{x \sim U_n}{\mathbb{E}} [(f * g)(x), \chi_S(x)] \\ = \frac{1}{N} \sum_{x \in \{0,1\}^n} \sum_{r \in \{0,1\}^n} f(r)g(x+r) \cdot \chi_S(x) \\ = \frac{1}{N} \sum_{x \in \{0,1\}^n} \sum_{r \in \{0,1\}^n} f(r)g(x+r) \cdot \chi_S(r)\chi_S(x+r) \\ = \frac{1}{N} \left(\sum_{r \in \{0,1\}^n} f(r)\chi_S(r) \right) \cdot \left(\sum_{x \in \{0,1\}^n} g(x+r)\chi_S(x+r) \right) \\ = N \cdot \widehat{f}(S) \cdot \widehat{g}(S)$$

Lecture 20: Fourier Analysis on the Boolean Hypercube

Example

Lemma

Let $V \subseteq \{0,1\}^n$ be a vector space of dimension t. Then

$$\widehat{U_V}(S) = egin{cases} rac{1}{N}, & \textit{if } S \in V^\perp \ 0, & \textit{otherwise} \end{cases}$$

- If dim(V) = 0 we know that the result is true (by Fourier transform of a delta-function)
- Let dim(V) = 1 be the base case
- For dim(V) > 1, we reduce the result to the base case
- Let $V = \operatorname{span}(v_1, \ldots, v_t)$ and $V_i = \operatorname{span}(v_i)$, for $i \in [t]$
- By base case, we have: $\widehat{U_{V_i}}(S) = 1/N$ if and only if $S \in V_i^{\perp}$, otherwise $\widehat{U_{V_i}}(S) = 0$
- Note that $U_V = U_{V_1} \oplus \cdots \oplus U_{V_t}$

•
$$\widehat{U}_V(S) = N^{t-1} \prod_{i=1}^t \widehat{U}_{V_i}(S)$$

< □ > < ⊡ > < ≅ > < ≅ > < ≅ > < ≅ < ⊃ <
Lecture 20: Fourier Analysis on the Boolean Hypercube

Example continued

- So, $\widehat{U_V}(S) = 0$, if there exists $i \in [t]$ such that $S \notin V_i^{\perp}$. That is, $\widehat{U_V}(S) = 0$, if $S \notin \cap_{i=1}^t V_i^{\perp} = V^{\perp}$
- If $S \in \bigcap_{i=1}^{t} V_i^{\perp} = V^{\perp}$, then it is easy to see that $\widehat{U_V}(S) = N^{t-1} \cdot \frac{1}{N^t} = \frac{1}{N}$ from the base case

• Think: How to prove the result for $\dim(V) = 1$?

Lecture 20: Fourier Analysis on the Boolean Hypercube

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Min-Entropy

- A distribution f has min-entropy k if $f(x) \leq 2^{-k}$, for all $x \in \{0, 1\}^n$
- The collision probability of *f* is defined as:

$$\operatorname{coll}(f) = \sum_{x \in \{0,1\}^n} f(x)^2$$

Lemma

If f has min-entropy k, then $coll(f) \leq 2^{-k}$

•
$$\operatorname{coll}(f) = \sum_{x \in \{0,1\}^n} f(x)^2 \leqslant \sum_{x \in \{0,1\}^n} f(x) \cdot 2^{-k} = 2^{-k}$$

< ロ > < 同 > < 回 > < 回 > < □ > < Lecture 20: Fourier Analysis on the Boolean Hypercube

-

Collision Probability and Fourier Coefficients

Lemma

Let f be a probability distribution with min-entropy k. Then:

$$2^{-k} \ge \operatorname{coll}(f) = N ||f||_2^2 = N \sum_{S \subseteq [n]} \widehat{f}(S)^2$$

・ロト ・四ト ・ヨト ・ヨト Lecture 20: Fourier Analysis on the Boolean Hypercube

э

Min-entropy Extraction via Masking with Small-bias Distribution

Lemma

Let f be a probability distribution with min-entropy k. Let g be a small-bias distribution, i.e. $bias_S(g) \leq 2^{-t}$, for $S \neq \emptyset$. Then:

 $\mathrm{SD}(f\oplus g, U_n)\leqslant \dots$

What is given:

•
$$\sum_{S\subseteq [n]} \widehat{f}(S)^2 \leqslant 1/KN$$
, where $K = 2^k$

• For all $S \neq \emptyset$, we have $|\widehat{g}(S)| \leq 1/TN$, where $T = 2^t$

What we need to prove:

• SD
$$(f \oplus g, U_n) \leqslant \frac{N}{2} \left(\sum_{S \neq \emptyset} \widehat{(f * g)}(S)^2 \right)^{1/2}$$
 is small

< □ > < ∂ > < ≥ > < ≥ > ≥ <>
Lecture 20: Fourier Analysis on the Boolean Hypercube

$$SD(f \oplus g, U_n) \leq \frac{N}{2} \left(\sum_{S \neq \emptyset} \widehat{(f * g)}(S)^2 \right)^{1/2}$$
$$= \frac{N}{2} \left(\sum_{S \neq \emptyset} N^2 \widehat{f}(S)^2 \widehat{g}(S)^2 \right)^{1/2}$$
$$\leq \frac{N}{2} \cdot \frac{1}{TN} \left(N^2 \sum_{S \subseteq [n]} \widehat{f}(S)^2 \right)^{1/2}$$
$$\leq \frac{1}{2} \cdot \frac{1}{T} \left(\frac{N}{K} \right)^{1/2}$$

Lecture 20: Fourier Analysis on the Boolean Hypercube

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?